第二七三章 :神级演讲
泗水第一中学刚刚建成的多媒体阶梯教室前正在举行揭牌仪式,县长、县教育局的领导都参加了,规格相当高,本来一个泗水第一中学小小的教室落成根本请不动这些县里的大人物参加的,他们之所以会来还是因为有一个人出席了,那就是多媒体阶梯教室的捐献者,猛犸科技的老板,国内著名的数学家,国内最年轻的教授级研究员刘猛先生。
县长亲切地跟刘猛握手,由衷地说道:“刘教授,泗水一中非常感谢你的慷慨解囊呀,本县能多出几个你这样的人才就是大幸啦。”
县教育局长和校长等人也是一顿恭维之声,当初刘猛的班主任也
一句嘴,说道:“当初刘猛在班上就表现与众不同,我就看出他将来定然不凡,果然如此啊。”
刘猛心里想笑,这个班主任还真有意思,实际上刘猛当初在班级并不太受班主任喜欢,大概就是因为他太特立独行了,属于那种成绩很好,但是不太听话的学生,上课就是埋头看书根本不鸟老师的那种,班级上出了这种学生,作为老师也是丝毫没有成就感的,肯定就不是那么喜欢。
校长明显有些不
班主任李德金,心想这种场面哪有你说话的地方,两个领导还没说几句话呢,我都还没来及发言呢,你就上去掺合,懂不懂规矩啊,忙堆满笑容说道:“学生们都翘首企盼呢,刘先生还是快开始您的演讲吧,我都拭目以待学习一下,说不定我还能再进步进步呢。”
刘猛当下对着几人点了点头,走上了讲台。
“在坐的同学们我想可能很多都很厌恶数学,一看到那些一堆堆的公式就头疼,然而真正喜欢研究数学的通常会觉得数学很好玩,那么数学到底哪里有趣了,数学之美又在哪里?我先用几个老少咸宜的算术问题,以定理、趣题甚至未解之谜等各种形式带领大家窥探数学世界的一角。不少问题背后都蕴含了深刻的数学知识,触及到数学的各个领域。希望从小数学就不及格的同学们能够喜欢上数学这门充满乐趣的学科。”
“第一个小问题,数字黑
6174,任意选一个四位数,当然数字不能全相同,把所有数字从大到小排列,再把所有数字从小到大排列,用前者大的数减去后者小的数得到一个新的数。重复对新得到的数进行上述操作,7步以内必然会得到6174。是不是很有趣呢?这样说大家可能理解的不太直观,好吧,那下面我来举一个例子,例如,选择四位数6767:7766-6677=1089;9810-0189=9621;9621-1269=8352;8532-58=6174;7641-1467=6174…6174这个‘黑
’就叫做kaprekar常数。对于三位数,也有一个数字黑
495。同学们课下不妨试验一下这些有趣的现象,实际上从这个问题出发,我们还能提出一个问题,那就是除了三位数、四位数有数字黑
,那么五位数、六位数、七位数有没有呢?”
才第一个小问题说完,在场的所有人都被刘猛的演讲吸引住了,这些知识可不是那些高中老师能够讲出来的,实际上泗水一中的老师大致分两类,第一种是早些年高中毕业或者专科毕业到学校任教的,只是教书的年数多了也有编制,可教学水平可想而知,经验丰富,但是眼界远远不够,第二种就是普通本科刚刚毕业的年轻老师,这些老师自己读高中的时候几乎全是那种很刻苦死读书但成绩并不太好的一类,甚至有些复读了几年才考上了最一般的本科,在学校里混了四年摇身一变就成了高中的老师了,就这样的水平,你能指望他的教学水平能有多高?照本宣科罢了。
刘猛就记得很清楚,高中时代的英语老师、数学老师、生物老师都属于第一种情况,物理老师就属于第二种情况,其中物理老师最搞了,刚毕业的小伙子还脸
,上课就是照本宣科,很多次在黑板上验算题目竟然经常出错,惹的下面的同学嘘声一片,这小伙子倒也执着,自己站一边看着,通常都还能发现自己错在哪儿了,就这样的老师,经验不足,天赋又差,能教出啥样的好学生?所以,刘猛当时所在的班级但凡成绩好点的同学都是靠自学的,认真听老师上课的学生,都只是成绩非常一般的那种。
同学们听了第一个问题之后讨论的声音很大,一下子都觉得数学当真是好玩,刘猛等了一会才开始讲第二个问题。
“第二个是3x+1问题,从任意一个正整数开始,重复对其进行下面的操作:如果这个数是偶数,把它除以2;如果这个数是奇数,则把它扩大到原来的3倍后再加1。大家会发现,序列最终总会变成4,2,1,4,2,1,…的循环。例如,所选的数是67,根据上面的规则可以依次得到:67,202,101,304,152,76,38,19,58,29,88,44,22,11,34,17,52,26,13,40,20,10,5,16,8,4,2,1,4,2,1…数学家们试了很多数,没有一个能逃脱‘421陷阱’。但是,是否对于所有的数,序列最终总会变成4,2,1循环呢?”
同学们讨论纷纷,甚至有些已经开始尝试验算起来。
刘猛继续说道:“这个问题可以说是一个巨坑——乍看之下,问题非常简单,突破口很多,于是很多数学家们纷纷往里面跳;殊不知进去容易出去难,不少数学家到死都没把这个问题搞出来。已经中招的数学家不计其数,这可以从3x+1问题的各种别名看出来:3x+1问题又叫llatz猜想、syrau
问题、ka
tani问题、has
算法、ula问题等等。后来,由于命名争议太大,干脆让谁都不沾光,直接叫做3x+1问题算了。”
“在数论上,只要推广到无限的数看似简单的命题都是非常难以证明的,因为你总无法用穷举法去一一证明吧,著名的黎曼猜想、费马大定理、哥德巴赫猜想都属于这种情况,3x+1问题也是如此,直到现在,数学家们仍然没有证明,这个规律对于所有的数都成立。在坐的同学们,如果有谁能够证明这个问题,那么他将是最伟大的数学家之一,至少是这个地球上最著名的前十人之一,至少也比众所周知的陈景润、华罗庚要厉害得多。”
同学们顿时炸成一锅粥,听起来如此简单的问题竟然破解了可以超越课本上那些出名的数学家,对于高中学生,特别是一座偏僻小城的高中生来说,简直就是打开了另一个天地,一股热血上涌,平时自诩比较聪明的同学都等不及拿出纸和笔来验算一番,幻想着一下下就能解决问题,扬名立万,被水木大学、燕京大学破格录取…等等,年轻人总是容易冲动且天真的、充满幻想的。
刘猛的演讲对这些同学们来说是极为简单的,在坐的就是数学很烂一直不及格的同学都能很容易理解这些问题,但是又是极为不同的,对他们的冲击可想而知,这种效果刘猛很满意,同时也有了一些想法,实际上越是年轻接触这些世界
的难题破解的几率就越大,就像怀尔斯就是在儿童时期接触的费马大定理,孔老师接触到哥德巴赫猜想已经是高中了,就有些晚了,在童年的时候有思索,等到大学读完有了手段,就极有可能有了新的思路,就极有可能取得大成就,然而如今的华夏教学在初、高中阶段学习了太多具有难度没有创新
的知识,学生们总是在一遍一遍做着题目,甚至有些所谓的知名高中每个星期都要试考,周末甚至都要补课,所谓的升学率确实闪瞎眼球,但是这些
受压抑的高中生们进入大学后会干什么呢?
被压抑的青春荷尔蒙爆发了,那些错过的电视剧、电影、游戏一窝蜂都要补回来,对于异
的好奇和躁动也都要爆发出来,进入大学校园,简直就到了春天的动物园,就如同赵老师说的那句一样“春天到了,动物们求偶
配的季节…”
90以上的大学生一个个猥琐的整天谈论女人,有几个对科学问题感兴趣的,这就是华夏教学最大的弊端,不管是家长和老师总喜欢提前把知识灌输到孩子的脑子里,那到底有什么用呢?相对来说,刘猛是比较推崇美国的教学方式,那就是让真正有兴趣的学生学的更加深入,可能大多数人都很误解,觉得美国的高中数学、物理、化学等太简单了,这是错误的,美国的高中基本教学确实很简单,但是同学们可以自己选修高难度的课程,比如你对数学敢兴趣你就可以选修数学的进阶课程,这些进阶课程可是华夏大一的高等数学啊,对于其他科目也同样如此,就是让敢兴趣的那部分同学学的更加深入。
而不是华夏这种大锅饭的教学手法,所有人都去认真学习元素周期表、各种复杂的化学反应、复杂的有机物结构式、复杂的力学公式、复杂的动量守恒、复杂的各种数学知识,但是多少人真正感兴趣呢?多少人在以后十年内真正使用这些知识呢?多少人毕业没几年就把这些学到的应付试考的东西全部还给了老师呢?应该也是绝大部分人吧!这是整个社会少年人智力的浪费,比八股文的科举试考还荼毒,是非常不科学的,严重阻碍社会的进步。
刘猛突然觉得这次的演讲非常有意义,为年轻人打开局限的天空,这些数学小问题甚至初中生都能懂,启蒙应该更早一些,想到此有了一些想法继续说道:“下一个小问题是特殊两位数乘法的速算,如果两个两位数的十位相同,个位数相加为10,那么你可以立即说出这两个数的乘积。如果这两个数分别写作ab和a,那么它们的乘积的前两位就是a和a+1的乘积,后两位就是b和的乘积。比如,47和43的十位数相同,个位数之和为10,因而它们乘积的前两位就是4x(4+1)=20,后两位就是7x3=21。也就是说,47x43=2021。类似地,61x69=4209,86x84=7224,35x35=1225,等等。那么到底为什么呢?”刘猛说完笑着提出了这个问题本后的本质。
同学们立刻思考起来,不一会儿一个前排很瘦小的同学举手说道:“我知道。”
刘猛很高兴,示意他说出来,这个同学很激动,站起来说道:“这个速算方法背后的原因是,这样的两位数可以表示位(10x+y)和(10x+(10-y)),相乘的话就是100x(x+1)+y(10-y),对任意x和y都成立,所以才能那样速算。”
刘猛赞叹道:“确实如此,看来这位同学对数学很感兴趣,不妨少听一些老师的讲课,把高中的内容学完之后尽快研究一些有难度的、具有创新
的数学命题,所取得的成就定然不小。”
得到刘猛的赞同,这些同学非常激动,
口都起伏着,脸上非常的自豪和骄傲。刘猛是谁?那是华夏如今最著名的数学家,没有之一,甚至超越了以往华夏的其他知名数学家,能得到他的赞扬,这是多高的荣誉啊?无怪乎把这个学生激动成这样。
“幻方,大家应该都玩过,一个三阶幻方是指把数字1到9填入3x3的方格,使得每一行、每一列和两条对角线的三个数之和正好都相同。比如第一行8、1、6;第二行3、5、7;第三行4、9、2;每条直线上的三个数之和都等于15。同学们或许都听说过幻方,但可能不知道幻方中的一些美妙的
质。例如,任意一个三阶幻方都
足,各行所组成的三位数的平方和,等于各行逆序所组成的三位数的平方和。对于刚才所说的三阶幻方,就
足,816、357、492的平方之和就等于618、753、294的平方之和,至于为什么会有这个性质呢?感兴趣的同学们可以自己去证明一下,利用高中学到的知识就能够证明,呵呵,数学最重要的是思维,可不是手段,所以呀,初等数学未必就不如高等数学厉害,甚至于初等数学中蕴含的思维比高等数学还要巧妙。”
刘猛今天所讲的这些数学的小问题,是真的把大家的兴趣都勾了起来,最主要的就是都是简单的问题,但是经过刘猛这一说,突然就高端大气起来,竟然解决这样简单的问题就成了最厉害的数学家,比那些奥数获得金奖的同学还厉害,一条崭新的康庄大道出现在眼前,让这些整天都在学习、复习、试考、补课的枯燥和压抑中等待着高考的到来希望能够考上一个重点大学的学生们有种茅
顿开之感。
“196算法,一个数正读反读都一样,我们就把它叫做回文数。随便选一个数,不断加上把它反过来写之后得到的数,直到得出一个回文数为止。例如,所选的数是67,两步就可以得到一个回文数484:67+76=143,143+341=484,把69变成一个回文数则需要四步:69+96=165,165+561=726,726+627=1353,1353+3531=4884,89的回文数之路则特别长,要到第24步才会得到第一个回文数,88132000188。”
“同学们或许会想,不断地‘一正一反相加’,最后总能得到一个回文数,这当然不足为奇了。事实情况也确实是这样——对于几乎所有的数,按照规则不断加下去,迟早会出现回文数。不过,196却是一个相当引人注目的例外。数学家们已经用计算机算到了3亿多位数,都没有产生过一次回文数。从196出发,究竟能否加出回文数来?196究竟特殊在哪儿?这至今仍是个谜,如果你们之中谁能破解这个谜,说不定能开辟出数论的一个新的分支出来。”
刘猛抛出的几个看似简单还未解决的问题已经把同学们弄的亟不可待了,对此刘猛是深知这些高中的孩子的,想当初老师在讲苯环的结构时就曾说过如果哪个同学能够解决类似的问题就能拿到诺贝尔奖,当时同学们听了之后是多么的激动啊,如今刘猛把这些如今简单又如此具体,而且都未解决的问题抛给同学们,那结果可想而知了,整个过程,同学们都是热血沸腾的,恨不得马上就能解决了刘猛所说的问题中的一个,或者全给解决了。
唯一的解
“经典数字谜题:用1到9组成一个九位数,使得这个数的第一位能被1整除,前两位组成的两位数能被2整除,前三位组成的三位数能被3整除,以此类推,一直到整个九位数能被9整除。你们没听错,真的有这样猛的数:381654729。其中3能被1整除,38能被2整除,381能被3整除,一直到整个数能被9整除。这个数既可以用整除的
质一步步推出来,也能利用计算机编程找到。另一个有趣的事实是,在所有由1到9所组成的362880个不同的九位数中,381654729是唯一一个
足要求的数!”
“数在变,数字不变,1456789的两倍是246913578,正好又是一个由1到9组成的数字。246913578的两倍是493827156,正好又是一个由1到9组成的数字。把493827156再翻一倍,987654312,依旧恰好由数字1到9组成的。把987654312再翻一倍的话,将会得到一个10位数1975308624,它里面仍然没有重复数字,恰好由0到9这10个数字组成。再把1975308624翻一倍,这个数将变成3950617248,依旧是由0到9组成的。那么,这个规律是否会一直持续下去?等下同学们自己去验算吧。”
刘猛连续讲了几个数论中有趣的小问题,场下的同学们都是兴趣盎然,不仅如此,就连坐在下面的县长、县教育局长、学长以及多位老师都听的聚
会神的,一些教数学的老师都忍不住按照刘猛的思路去验算起来,县长叹道:“你们都听听,大师就是不一样,能够深入浅出把那么高深的问题说的我们大家都明白,你们老师教课就该如此,有时候我儿子的作业拿回来,才仅仅初中,我都有时候看不明白,这就是差距,蠢材总喜欢把简单的问题复杂化好体现出自己不够蠢,有自信的天才是把最复杂的问题简单化让大家都明白。”
教育局长、校长和老师们忙点头称是“县长说的极是,我们的教育工作一定改进。”话虽如此,鬼知道这帮家伙到底去不去改进呢?
刘猛接下来又深入浅出地阐述了一下哥德巴赫猜想,这可是正宗的世界级难题,刘猛距离解决她就差那么一点点却一下子卡了一年多,这一年多他尝试了各种体验都解决不了,只能先放弃回到了家乡,转而开展家乡的教育工作,其实他很希望从这些学生的思维中找一找灵感,少年人的想法天马行空,才又可能打开思路,那些成名的数学家,早已经被太多的思维定势侵蚀了。
“如果你们谁对哥德巴赫猜想有什么想法都可以来找我,随后一周我都会在隔壁的猛犸科技公司,即便是不切实际的想法也不要紧可以大胆来找我,敢想才是第一位的。”刘猛笑着说道。
同学们一片哗然,马上就开始努力地思索,刘猛又加了一句道:“如果哪位同学的想法对我有启发,又确实热爱数学,我可以向水木大学推荐参加提前招生。”
哗啦一声,同学们又炸锅了,要知道犹豫泗水一中的教学水平不高,尤其是英语教学师资力量太差,已经连续三年没人能够考上水木大学,在泗水城能够考上水木大学是一件非常光彩的事情,整个县城都会疯传,特别有面子。
刘猛这话也绝对不是吹牛的,自从他又发表了一篇孪生素数的论文之后,加上之前解决西塔潘猜想获聘的教授级研究员,如今在华夏已经隐隐是第一数学家了,回归之后,水木大学已经给他发了邀请函,聘请为水木大学教授,给出的待遇更加优厚,刘猛没直接答应,水木大学转而邀请他当一个什么奖的评委,据接洽的人员说这个奖学金是水木大学最具含金量的奖,每个学生大学期间只能参评一次,而且整个本科生中一年只有十名,如果水木大学是所有华夏学子心中的圣地而朝思暮想的话,那么这个奖就是所有水木大学学生心中的圣地而魂牵梦绕,其高
格可想而知,刘猛已经同意去当评委了,就在两周之后。
刘猛接着说道:“其实搞数学,思维是最重要的,所谓的思维说的虚幻一点就是灵魂深处的闪光点,简单来说就是切入问题的角度要与众不同,高斯的故事同学们肯定都知道,老师布置了一个题目,1到100相加之和,所有同学都去用本方法相加,他却想到利用数列去解决,即便是心算再厉害的人也不如高斯的独特思维得到的答案快,这就是思维的力量,所以说思维是一种比能力和知识都强大的力量。”
“那么本次演讲的最有,最后讲一个小故事,看看哪位同学能够最快得到答案,两列火车相隔200公里,各以每小时50千米的速度相向而行。一只苍蝇从其中一列前端出发,以每小时75千米的速度,在两列车之间来来回回飞个不停,问题是:直到两车相撞,苍蝇飞过的总距离是多少?有没有同学能够在一分钟内给出答案呢?”
刘猛问题一出,大家纷纷拿出纸笔计算起来,虽然刘猛刚才说了思维是最重要的,但是在时间紧张的情况下,同学们还是习惯开始演算,这就是思维定势的影响了,实际上这道题目就如同1+2+3一直加到100的题目一样,找准切入点是很容易的。r1152
varwsadnfig=;